Patterns, Mechanisms, and Ecological Implications of Cattail (typha Spp.) Dominance in Great Lakes Wetlands

نویسنده

  • Lynn Ellise Vaccaro
چکیده

Many wetlands of the Great Lakes region are increasingly dominated by species of cattails, including the native Typha latifolia, the introduced Typha angustifolia, and their hybrid Typha glauca. Cattails are observed to form dense stands of live and dead biomass that may reduce plant diversity and compromise wetland habitat value. Cattail expansion has been used as an indicator of environmental change in the Everglades, but a broad analysis of the distribution and impacts of the northern species has not been conducted. In this study, I examined the patterns of cattail distribution across the Great Lakes, explored one mechanism by which cattails attain dominance in several Lake Ontario wetlands, and experimentally measured the effect of cattail biomass on plant species diversity in one wetland. Patterns at the regional scale were addressed by analyzing vegetation surveys of 90 wetlands around the Great Lakes. Surveys were conducted in collaboration with scientists from the University of Minnesota – Duluth and the University of Wisconsin – Madison as part of an EPA-funded research program, the Great Lakes Environmental Indicators project. I compared patterns of dominance of invasive Typha (T. angustifolia and T. glauca) with those of five co-occurring, native graminoids, Typha latifolia, Sparganium eurycarpum, Calamagrostis canadensis, Carex lacustris and Schoenoplectus tabernaemontani. In contrast to the native species, the invasive Typha species represented a larger proportion of the plant cover in wetlands where they occurred (16% vs. 2 9% for natives), and their occurrence was associated with lower species density (7.1 vs. 8.69.7 spp/m for natives). Unlike the native species, the relative cover of invasive Typha was positively related to an index of agricultural intensity calculated for a wetland’s watershed (p<0.001). Agriculture uniquely explained 10% of the variation in the relative cover of invasive Typha, after accounting for variation due to lake identity (21%) and mean water depth (6%). Among six Lake Ontario wetlands, I investigated the relationship between cattail abundance, litter accumulation, and species density in two hydrogeologic settings. I hypothesized that litter biomass would be higher in the Typha-dominated, open embayment wetlands than the protected wetlands that contained a mixed marsh meadow community. The mean biomass of all litter was higher in the open wetlands (1.7 2.6 vs. 0.4 -1.2 kg/m for protected sites) and litter biomass was negatively related to species density (r=0.88, p=0.005). I further explored whether variation in litter biomass could be explained by differences in production, decomposition or hydrology. Peak live biomass was similar across the six sites. Decomposition rates in the fallen litter layer explained some of the variation in total litter (standing and fallen), but could not account for the overall higher accumulation in the open wetlands. Between May and September 2004, wetlands open to the lake experienced a narrower range of monthly water levels than the protected wetlands. The more stable water levels and the higher density of standing cattail litter in the open wetlands may be limiting the physical removal of litter, resulting in greater litter biomass. Within one cattail-dominated wetland, I experimentally tested the hypothesis that an accumulation of cattail litter reduced species density. I added and removed both standing and fallen litter, and transplanted test seedlings into all plots. After 14 weeks, I found that fallen litter negatively influenced seedling survival (p=0.061) and species density (p=0.024), but the effect of standing litter was insignificant. In summary, both observational and experimental data indicate a negative relationship between cattail litter biomass and species density. Therefore, factors affecting cattail litter production (e.g., agriculture) and decomposition (e.g., water levels) could have important implications for cattail dominance and species diversity in Great Lakes wetlands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying and Characterizing Dominant Plants as an Indicator of Community Condition

Dominant species play key roles in shaping community structure, but their behavior is far from uniform. We speculated that recognition of different behaviors (determined objectively) would be an indicator of the condition of plant communities. We developed a species dominance index (SDI) to identify dominant species and compare their behavior across multiple spatial scales. The SDI is based on ...

متن کامل

Restoring diversity after cattail expansion: disturbance, resilience, and seasonality in a tropical dry wetland.

As the human footprint expands, ecologists and resource managers are increasingly challenged to explain and manage abrupt ecosystem transformations (i.e., regime shifts). In this study, we investigated the role of a mechanical disturbance that has been used to restore and maintain local wetland diversity after a monotypic regime shift in northwestern Costa Rica [specifically, an abrupt landscap...

متن کامل

Testing a Fish Index of Biotic Integrity for Responses to Different Stressors in Great Lakes Coastal Wetlands

Fish community composition often varies across ecoregions and hydrogeomorphic types within ecoregions. We evaluated two indices of biotic integrity (IBIs) developed for fish in Great Lakes coastal wetlands dominated (> 50% cover) by Typha (cattail) and Schoenoplectus (formerly Scirpus) (bulrush) vegetation. Thirty-three coastal wetlands dominated by either Typha or Schoenoplectus vegetation wer...

متن کامل

Mechanical Harvesting Effectively Controls Young Typha spp. Invasion and Unmanned Aerial Vehicle Data Enhances Post-treatment Monitoring

The ecological impacts of invasive plants increase dramatically with time since invasion. Targeting young populations for treatment is therefore an economically and ecologically effective management approach, especially when linked to post-treatment monitoring to evaluate the efficacy of management. However, collecting detailed field-based post-treatment data is prohibitively expensive, typical...

متن کامل

Litter drives ecosystem and plant community changes in cattail invasion.

Invaded systems are commonly associated with a change in ecosystem processes and a decline in native species diversity; however, many different causal pathways linking invasion, ecosystem change, and native species decline could produce this pattern. The initial driver of environmental change may be anthropogenic, or it may be the invader itself; and the mechanism behind native species decline ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005